Three-terminal resistive switch based on metal/metal oxide redox reactions

A solid-state three-terminal resistive switch based on gate-voltage-tunable reversible oxidation of a thin-film metallic channel is demonstrated. The switch is composed of a cobalt wire placed under a GdOx layer and a Au top electrode. The lateral resistance of the wire changes with the transition b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2017-08, Vol.7 (1), p.7452-7, Article 7452
Hauptverfasser: Huang, Mantao, Tan, Aik Jun, Mann, Maxwell, Bauer, Uwe, Ouedraogo, Raoul, Beach, Geoffrey S. D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A solid-state three-terminal resistive switch based on gate-voltage-tunable reversible oxidation of a thin-film metallic channel is demonstrated. The switch is composed of a cobalt wire placed under a GdOx layer and a Au top electrode. The lateral resistance of the wire changes with the transition between cobalt and cobalt oxide controlled by a voltage applied to the top electrode. The kinetics of the oxidation and reduction process are examined through time- and temperature-dependent transport measurements. It is shown that that reversible voltage induced lateral resistance switching with a ratio of 10 3 can be achieved at room temperature. The reversible non-volatile redox reaction between metal and metal oxide may provide additional degrees of freedom for post-fabrication control of properties of solid-state materials. This type of three-terminal device has potential applications in neuromorphic computing and multilevel data storage, as well as applications that require controlling a relatively large current.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-017-06954-x