Observation based climatology Martian atmospheric waves perturbation Datasets

The Martian atmospheric waves perturbation Datasets (MAWPD) version 2.0 is the first observation-based climatology dataset of Martian atmospheric waves. It contains climatology-gridded temperature, gravity waves, and tides spanning the whole Martian year. MAWPD uses the Data INterpolating Empirical...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific data 2023-01, Vol.10 (1), p.4-13, Article 4
Hauptverfasser: Zhang, Jie, Ji, Qianqian, Sheng, Zheng, He, Mingyuan, He, Yang, Zuo, Xinjie, He, Zefeng, Qin, Zilin, Wu, Gangyao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Martian atmospheric waves perturbation Datasets (MAWPD) version 2.0 is the first observation-based climatology dataset of Martian atmospheric waves. It contains climatology-gridded temperature, gravity waves, and tides spanning the whole Martian year. MAWPD uses the Data INterpolating Empirical Orthogonal Functions method (DINEOF) reconstruction method for data assimilation with the observational data from the Mars Global Surveyor (MGS), Mars Reconnaissance Orbiter (MRO), Mars Atmosphere and Volatile EvolutioN (MAVEN), Mars Pathfinder (MP), Mars Phoenix Lander (MPL), Mars Exploration Rover (MER) and Mars Express (MEX) temperature retrievals. The dataset includes gridded fields of temperature (Level 1 data) as well as the physical quantities of GWs (Level 2 data, amplitude, and potential energies), SPWs and tides (Level 2 data, amplitude, and phase). The MAWPD, based entirely on multiple reliable observations, provides climatological background atmospheric information of temperature and wave disturbances on Mars. The dataset is not only useful for observation-based scientific studies concerning Martian atmospheric waves, e.g., circulation, dust storms, and wave excitation mechanism, but also for cross-validating with model-based datasets or model results.
ISSN:2052-4463
2052-4463
DOI:10.1038/s41597-022-01909-y