Weighted arithmetic–geometric operator mean inequalities
In this paper, we refine and generalize some weighted arithmetic–geometric operator mean inequalities due to Lin (Stud. Math. 215:187–194, 2013 ) and Zhang (Banach J. Math. Anal. 9:166–172, 2015 ) as follows: Let A and B be positive operators. If 0 < m ≤ A ≤ m ′ < M ′ ≤ B ≤ M or 0 < m ≤ B ≤...
Gespeichert in:
Veröffentlicht in: | Journal of inequalities and applications 2018, Vol.2018 (1), p.154-6, Article 154 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we refine and generalize some weighted arithmetic–geometric operator mean inequalities due to Lin (Stud. Math. 215:187–194,
2013
) and Zhang (Banach J. Math. Anal. 9:166–172,
2015
) as follows: Let
A
and
B
be positive operators. If
0
<
m
≤
A
≤
m
′
<
M
′
≤
B
≤
M
or
0
<
m
≤
B
≤
m
′
<
M
′
≤
A
≤
M
, then for a positive unital linear map Φ,
Φ
2
(
A
∇
α
B
)
≤
[
K
(
h
)
S
(
h
′
r
)
]
2
Φ
2
(
A
♯
α
B
)
,
Φ
2
(
A
∇
α
B
)
≤
[
K
(
h
)
S
(
h
′
r
)
]
2
[
Φ
(
A
)
♯
α
Φ
(
B
)
]
2
,
Φ
2
p
(
A
∇
α
B
)
≤
1
16
[
K
2
(
h
)
(
M
2
+
m
2
)
2
S
2
(
h
′
r
)
M
2
m
2
]
p
Φ
2
p
(
A
♯
α
B
)
,
Φ
2
p
(
A
∇
α
B
)
≤
1
16
[
K
2
(
h
)
(
M
2
+
m
2
)
2
S
2
(
h
′
r
)
M
2
m
2
]
p
[
Φ
(
A
)
♯
α
Φ
(
B
)
]
2
p
,
where
α
∈
[
0
,
1
]
,
K
(
h
)
=
(
h
+
1
)
2
4
h
,
S
(
h
′
)
=
h
′
1
h
′
−
1
e
log
h
′
1
h
′
−
1
,
h
=
M
m
,
h
′
=
M
′
m
′
,
r
=
min
{
α
,
1
−
α
}
and
p
≥
2
. |
---|---|
ISSN: | 1025-5834 1029-242X 1029-242X |
DOI: | 10.1186/s13660-018-1750-7 |