Modelling Takenouchi-Kosaki syndrome using disease-specific iPSCs

Takenouchi-Kosaki Syndrome (TKS) is a congenital multi-organ disorder caused by the de novo missense mutation c.191A > G p. Tyr64Cys (Y64C) in the CDC42 gene. We previously elucidated the functional abnormalities and thrombopoietic effects of Y64C using HEK293 and MEG01 cells. In the present stud...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Stem cell research 2023-12, Vol.73, p.103221-103221, Article 103221
Hauptverfasser: Thanasegaran, Suganya, Daimon, Etsuko, Shibukawa, Yukinao, Yamazaki, Natsuko, Okamoto, Nobuhiko
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Takenouchi-Kosaki Syndrome (TKS) is a congenital multi-organ disorder caused by the de novo missense mutation c.191A > G p. Tyr64Cys (Y64C) in the CDC42 gene. We previously elucidated the functional abnormalities and thrombopoietic effects of Y64C using HEK293 and MEG01 cells. In the present study, we used iPSCs derived from TKS patients to model the disease and successfully recapitulated macrothrombocytopenia, a prominent TKS phenotype. The megakaryopoietic differentiation potential of TKS-iPSCs and platelet production capacity were examined using an efficient platelet production method redesigned from existing protocols. The results obtained showed that TKS-iPSCs produced fewer hematopoietic progenitor cells, exhibited defective megakaryopoiesis, and released platelets with an abnormally low count and giant morphology. We herein report the first analysis of TKS-iPSC-derived megakaryocytes and platelets, and currently utilize this model to perform drug evaluations for TKS. Therefore, our simple yet effective differentiation method, which mimics the disease in a dish, is a feasible strategy for studying hematopoiesis and related diseases.
ISSN:1873-5061
1876-7753
DOI:10.1016/j.scr.2023.103221