Green synthesis of graphite from CO2 without graphitization process of amorphous carbon

Environmentally benign synthesis of graphite at low temperatures is a great challenge in the absence of transition metal catalysts. Herein, we report a green and efficient approach of synthesizing graphite from carbon dioxide at ultralow temperatures in the absence of transition metal catalysts. Car...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2021-01, Vol.12 (1), p.119-119, Article 119
Hauptverfasser: Liang, Chu, Chen, Yun, Wu, Min, Wang, Kai, Zhang, Wenkui, Gan, Yongping, Huang, Hui, Chen, Jian, Xia, Yang, Zhang, Jun, Zheng, Shiyou, Pan, Hongge
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Environmentally benign synthesis of graphite at low temperatures is a great challenge in the absence of transition metal catalysts. Herein, we report a green and efficient approach of synthesizing graphite from carbon dioxide at ultralow temperatures in the absence of transition metal catalysts. Carbon dioxide is converted into graphite submicroflakes in the seconds timescale via reacting with lithium aluminum hydride as the mixture of carbon dioxide and lithium aluminum hydride is heated to as low as 126 °C. Gas pressure-dependent kinetic barriers for synthesizing graphite is demonstrated to be the major reason for our synthesis of graphite without the graphitization process of amorphous carbon. When serving as lithium storage materials, graphite submicroflakes exhibit excellent rate capability and cycling performance with a reversible capacity of ~320 mAh g –1 after 1500 cycles at 1.0 A g –1 . This study provides an avenue to synthesize graphite from greenhouse gases at low temperatures. Green synthesis of graphite is a great challenge in the absence of the graphitization of amorphous carbon at high temperatures. Here, the authors report a green approach of synthesizing graphite from carbon dioxide at low temperature in seconds timescale.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-020-20380-0