Induction of resilience strategies against biochemical deteriorations prompted by severe cadmium stress in sunflower plant when Trichoderma and bacterial inoculation were used as biofertilizers
Cadmium (Cd) is a highly toxic heavy metal. Its emission is suspected to be further increased due to the dramatic application of ash to agricultural soils and newly reclaimed ones. Thereby, Cd stress encountered by plants will exacerbate. Acute and chronic exposure to Cd can upset plant growth and d...
Gespeichert in:
Veröffentlicht in: | Frontiers in plant science 2022-10, Vol.13, p.1004173 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Cadmium (Cd) is a highly toxic heavy metal. Its emission is suspected to be further increased due to the dramatic application of ash to agricultural soils and newly reclaimed ones. Thereby, Cd stress encountered by plants will exacerbate. Acute and chronic exposure to Cd can upset plant growth and development and ultimately causes plant death. Microorganisms as agriculturally important biofertilizers have constantly been arising as eco-friendly practices owing to their ability to built-in durability and adaptability mechanisms of plants. However, applying microbes as a biofertilizer agent necessitates the elucidation of the different mechanisms of microbe protection and stabilization of plants against toxic elements in the soil. A greenhouse experiment was performed using
and plant growth-promoting (PGP) bacteria (
and
) individually and integrally to differentiate their potentiality in underpinning various resilience mechanisms versus various Cd levels (0, 50, 100, and 150 mg/kg of soil). Microorganisms were analyzed for Cd tolerance and biosorption capacity, indoleacetic acid production, and phosphate and potassium solubilization
. Plant growth parameters, water relations, physiological and biochemical analysis, stress markers and membrane damage traits, and nutritional composition were estimated.
Unequivocal inversion from a state of downregulation to upregulation was distinct under microbial inoculations. Inoculating soil with
and PGPB markedly enhanced the plant parameters under Cd stress (150 mg/kg) compared with control plants by 4.9% and 13.9%, 5.6% and 11.1%, 55.6% and 5.7%, and 9.1% and 4.6% for plant fresh weight, dry weight, net assimilation rate, and transpiration rate, respectively; by 2.3% and 34.9%, 26.3% and 69.0%, 26.3% and 232.4%, 135.3% and 446.2%, 500% and 95.6%, and 60% and 300% for some metabolites such as starch, amino acids, phenolics, flavonoids, anthocyanin, and proline, respectively; by 134.0% and 604.6% for antioxidants including reduced glutathione; and by 64.8% and 91.2%, 21.9% and 72.7%, and 76.7% and 166.7% for enzymes activity including ascorbate peroxidase, glutathione peroxidase, and phenylalanine ammonia-lyase, respectively. Whereas a hampering effect mediated by PGP bacterial inoculation was registered on levels of superoxide anion, hydroxyl radical, electrolyte leakage, and polyphenol oxidase activity, with a decrease of 0.53%, 14.12%, 2.70%, and 5.70%, respectively, under a highest Cd level (150 mg/kg) compared with |
---|---|
ISSN: | 1664-462X 1664-462X |
DOI: | 10.3389/fpls.2022.1004173 |