Exactly solvable single-trace four point correlators in χCFT4

A bstract In this paper we study a wide class of planar single-trace four point correlators in the chiral conformal field theory ( χ CFT 4 ) arising as a double scaling limit of the γ -deformed N = 4 SYM theory. In the planar (t’Hooft) limit, each of such correlators is described by a single Feynman...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of high energy physics 2021-02, Vol.2021 (2), p.1-86, Article 146
Hauptverfasser: Derkachov, Sergey, Olivucci, Enrico
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A bstract In this paper we study a wide class of planar single-trace four point correlators in the chiral conformal field theory ( χ CFT 4 ) arising as a double scaling limit of the γ -deformed N = 4 SYM theory. In the planar (t’Hooft) limit, each of such correlators is described by a single Feynman integral having the bulk topology of a square lattice “fishnet” and/or of an honeycomb lattice of Yukawa vertices. The computation of this class of Feynmann integrals at any loop is achieved by means of an exactly-solvable spin chain magnet with SO(1 , 5) symmetry. In this paper we explain in detail the solution of the magnet model as presented in our recent letter and we obtain a general formula for the representation of the Feynman integrals over the spectrum of the separated variables of the magnet, for any number of scalar and fermionic fields in the corresponding correlator. For the particular choice of scalar fields only, our formula reproduces the conjecture of B. Basso and L. Dixon for the fishnet integrals.
ISSN:1029-8479
1029-8479
DOI:10.1007/JHEP02(2021)146