Performance Evaluation of Classification Algorithms to Detect Bee Swarming Events Using Sound

This paper presents a machine-learning approach for detecting swarming events. Three different classification algorithms are tested: The k-Nearest Neighbors algorithm (k-NN) and Support Vector Machine (SVM), and a newly proposed by the authors, U-Net Convolutional Neural Network (CNN), developed for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Signals 2022-12, Vol.3 (4), p.807-822
Hauptverfasser: Dimitrios, Kiromitis I., Bellos, Christos V., Stefanou, Konstantinos A., Stergios, Georgios S., Andrikos, Ioannis, Katsantas, Thomas, Kontogiannis, Sotirios
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents a machine-learning approach for detecting swarming events. Three different classification algorithms are tested: The k-Nearest Neighbors algorithm (k-NN) and Support Vector Machine (SVM), and a newly proposed by the authors, U-Net Convolutional Neural Network (CNN), developed for biomedical image segmentation. Next, the authors present their experimental scenario of collecting audio data of swarming and non-swarming events and evaluating the results from the k-NN and SVM classifiers and their proposed CNN algorithm. Finally, the authors compare these three methods and present the cross-comparison results of the optimal method for early and late/close-to-the-event detection of swarming.
ISSN:2624-6120
2624-6120
DOI:10.3390/signals3040048