Progress in Catalytic Decomposition and Removal of N2O in Fluidized Bed

As a clean fuel combustion technology, the circulating fluidized bed (CFB) has been developed rapidly in recent years, but one of its disadvantages is high N2O emissions. With the implementation of increasingly strict pollution control standards, N2O decomposition and removal technologies have becom...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energies (Basel) 2021-10, Vol.14 (19), p.6148
Hauptverfasser: Miao, Miao, Zhang, Man, Kong, Hao, Zhou, Tuo, Yang, Xinhua, Yang, Hairui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:As a clean fuel combustion technology, the circulating fluidized bed (CFB) has been developed rapidly in recent years, but one of its disadvantages is high N2O emissions. With the implementation of increasingly strict pollution control standards, N2O decomposition and removal technologies have become the main focus of current research. This paper reviews the latest research on noble metals, metal oxides, the molecular sieve and other new catalysts and decomposition methods for N2O removal. The research methods and functions of catalysts are compared and the existing problems are summarized. The future directions of development in N2O decomposition and removal are considered. Noble metals and the molecular sieve show satisfactory activity at relatively low temperatures, but their catalytic efficiency is obviously hindered by O2, NO and H2O. In addition, high costs and insufficient thermal stability limit their widespread industrial application. The metal oxide catalytic technology, especially oxygen carrier-aided combustion (OCAC), is expected to be the ideal method for N2O removal in CFB boilers due to its stability and economical feasibility.
ISSN:1996-1073
1996-1073
DOI:10.3390/en14196148