Ultrafast photoluminescence and multiscale light amplification in nanoplasmonic cavity glass

Interactions between plasmons and exciton nanoemitters in plexcitonic systems lead to fast and intense luminescence, desirable in optoelectonic devices, ultrafast optical switches and quantum information science. While luminescence enhancement through exciton-plasmon coupling has thus far been mostl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2024-04, Vol.15 (1), p.3309-3309, Article 3309
Hauptverfasser: Piotrowski, Piotr, Buza, Marta, Nowaczyński, Rafał, Kongsuwan, Nuttawut, Surma, Hańcza B., Osewski, Paweł, Gajc, Marcin, Strzep, Adam, Ryba-Romanowski, Witold, Hess, Ortwin, Pawlak, Dorota A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Interactions between plasmons and exciton nanoemitters in plexcitonic systems lead to fast and intense luminescence, desirable in optoelectonic devices, ultrafast optical switches and quantum information science. While luminescence enhancement through exciton-plasmon coupling has thus far been mostly demonstrated in micro- and nanoscale structures, analogous demonstrations in bulk materials have been largely neglected. Here we present a bulk nanocomposite glass doped with cadmium telluride quantum dots (CdTe QDs) and silver nanoparticles, nAg, which act as exciton and plasmon sources, respectively. This glass exhibits ultranarrow, FWHM = 13 nm, and ultrafast, 90 ps, amplified photoluminescence (PL), λ em ≅503 nm, at room temperature under continuous-wave excitation, λ exc  = 405 nm. Numerical simulations confirm that the observed improvement in emission is a result of a multiscale light enhancement owing to the ensemble of QD-populated plasmonic nanocavities in the material. Power-dependent measurements indicate that >100 mW coherent light amplification occurs. These types of bulk plasmon-exciton composites could be designed comprising a plethora of components/functionalities, including emitters (QDs, rare earth and transition metal ions) and nanoplasmonic elements (Ag/Au/TCO, spherical/anisotropic/miscellaneous), to achieve targeted applications. This article presents a unique nanocomposite plasmonic-excitonic glass with extraordinary amplified optical properties: ultra-narrow photoluminescence (FWHM = 13 nm) and ultrashort photoluminescence lifetime (90 ps) at room temperature
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-024-47539-3