Enrichment and proteomic identification of Cryptosporidium parvum oocyst wall

Cryptosporidium parvum is a zoonotic parasitic protozoan that can infect a variety of animals and humans and is transmitted between hosts via oocysts. The oocyst wall provides strong protection against hostile environmental factors; however, research is limited concerning the oocyst wall at the prot...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Parasites & vectors 2022-09, Vol.15 (1), p.1-335, Article 335
Hauptverfasser: Wang, Luyang, Wang, Yuexin, Cui, Zhaohui, Li, Dongfang, Li, Xiaoying, Zhang, Sumei, Zhang, Longxian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cryptosporidium parvum is a zoonotic parasitic protozoan that can infect a variety of animals and humans and is transmitted between hosts via oocysts. The oocyst wall provides strong protection against hostile environmental factors; however, research is limited concerning the oocyst wall at the proteomic level. A comprehensive analysis of the proteome of oocyst wall of C. parvum was performed using label-free qualitative high-performance liquid chromatography (HPLC) fractionation and mass spectrometry-based qualitative proteomics technologies. Among the identified proteins, a surface protein (CpSP1) encoded by the C. parvum cgd7_5140 (Cpcgd7_5140) gene was predicted to be located on the surface of the oocyst wall. We preliminarily characterized the sequence and subcellular localization of CpSP1. A total of 798 proteins were identified, accounting for about 20% of the CryptoDB proteome. By using bioinformatic analysis, functional annotation and subcellular localization of the identified proteins were examined for better understanding of the characteristics of the oocyst wall. To verify the localization of CpSP1, an indirect immunofluorescent antibody assay demonstrated that the protein was localized on the surface of the oocyst wall, illustrating the potential usage as a marker for C. parvum detection in vitro. The results provide a global framework about the proteomic composition of the Cryptosporidium oocyst wall, thereby providing a theoretical basis for further study of Cryptosporidium oocyst wall formation as well as the selection of targets for Cryptosporidium detection.
ISSN:1756-3305
1756-3305
DOI:10.1186/s13071-022-05448-8