CircFgfr2 promotes osteogenic differentiation of rat dental follicle cells by targeting the miR-133a-3p/DLX3 signaling pathway

Dental follicle cells (DFCs) promote bone regeneration in vivo and in vitro. Circular RNAs (circRNAs) play crucial roles in bone development and regeneration. Our previous study demonstrated the upregulation of circFgfr2 expression during the osteogenic differentiation of DFCs. However, the molecula...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Heliyon 2024-06, Vol.10 (11), p.e32498, Article e32498
Hauptverfasser: Xu, Cheng, Xu, Zhiqing, Li, Guixian, Li, Jing, Ye, Li, Ning, Yang, Du, Yu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Dental follicle cells (DFCs) promote bone regeneration in vivo and in vitro. Circular RNAs (circRNAs) play crucial roles in bone development and regeneration. Our previous study demonstrated the upregulation of circFgfr2 expression during the osteogenic differentiation of DFCs. However, the molecular mechanisms and functional roles of circFgfr2 in DFCs osteogenesis remain unclear. In this study, we aimed to investigate the subcellular localization of circFgfr2 in DFCs using fluorescence in situ hybridization. In vitro investigations demonstrated that circFgfr2 overexpression promoted osteogenic differentiation, as evidenced by real-time quantitative polymerase chain reaction. By integrating the outcomes of bioinformatics analyses, dual luciferase reporter experiments, and chromatin isolation by RNA purification, we identified circFgfr2 as a sponge for miR-133a-3p, a key regulator of osteogenic differentiation. Moreover, miR-133a-3p suppressed osteogenic differentiation by targeting DLX3 and RUNX2 in DFCs. We validated that circFgfr2 promoted the osteogenic differentiation of DFCs through the miR-133a-3p/DLX3 axis. To further investigate the therapeutic potential of circFgfr2 in bone regeneration, we conducted in vivo experiments and histological analyses. Overall, these results confirmed the crucial role of circFgfr2 in promoting osteogenesis. In summary, our findings demonstrated that the circFgfr2/miR-133a-3p/DLX3 pathway acts as a cascade, thereby identifying circFgfr2 as a promising molecular target for bone tissue engineering. CircFgfr2 promotes osteogenic differentiation of rat dental follicle cells by targeting the miR-133a-3p/DLX3 signaling pathway. [Display omitted] •CircFgfr2 enhances DFCs osteogenesis.•Role of circFgfr2 in bone regeneration was identified.•Role of circFgfr2/miR-133a-3p/DLX3 cascade in osteogenesis was unveiled.•Function and subcellular localization of circFgfr2 function in DFCs were confirmed.•CircFgfr2 potential and application in bone tissue engineering was confirmed.
ISSN:2405-8440
2405-8440
DOI:10.1016/j.heliyon.2024.e32498