Kibble-Zurek scaling in quantum speed limits for shortcuts to adiabaticity

Geometric quantum speed limits quantify the tradeoff between the rate at which quantum states can change and the resources that are expended during the evolution. Counterdiabatic driving is a unique tool from shortcuts to adiabaticity to speed up quantum dynamics while completely suppressing nonequi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review research 2020-07, Vol.2 (3), p.032020, Article 032020
Hauptverfasser: Puebla, Ricardo, Deffner, Sebastian, Campbell, Steve
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Geometric quantum speed limits quantify the tradeoff between the rate at which quantum states can change and the resources that are expended during the evolution. Counterdiabatic driving is a unique tool from shortcuts to adiabaticity to speed up quantum dynamics while completely suppressing nonequilibrium excitations. We show that the quantum speed limit for counterdiabatically driven systems undergoing quantum phase transitions fully encodes the Kibble-Zurek mechanism by correctly predicting the transition from adiabatic to impulse regimes. Our findings are demonstrated for three scenarios, namely the transverse field Ising model, the Landau-Zener model, and the Lipkin-Meshkov-Glick model.
ISSN:2643-1564
2643-1564
DOI:10.1103/PhysRevResearch.2.032020