A New Measurement of Internet Addiction Using Diagnostic Classification Models
To obtain accurate, valid, and rich information from the questionnaires for internet addiction, a diagnostic classification test for internet addiction (the DCT-IA) was developed using diagnostic classification models (DCMs), a cutting-edge psychometric theory, based on DSM-5. A calibration sample a...
Gespeichert in:
Veröffentlicht in: | Frontiers in psychology 2017-10, Vol.8, p.1768-1768 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | To obtain accurate, valid, and rich information from the questionnaires for internet addiction, a diagnostic classification test for internet addiction (the DCT-IA) was developed using diagnostic classification models (DCMs), a cutting-edge psychometric theory, based on DSM-5. A calibration sample and a validation sample were recruited in this study to calibrate the item parameters of the DCT-IA and to examine the sensitivity and specificity. The DCT-IA had high reliability and validity based on both CTT and DCMs, and had a sensitivity of 0.935 and a specificity of 0.817 with AUC = 0.919. More important, different from traditional questionnaires, the DCT-IA can simultaneously provide general-level diagnostic information and the detailed symptom criteria-level information about the posterior probability of satisfying each symptom criterion in DMS-5 for each patient, which gives insight into tailoring individual-specific treatments for internet addiction. |
---|---|
ISSN: | 1664-1078 1664-1078 |
DOI: | 10.3389/fpsyg.2017.01768 |