Flow Profile Estimating in production wells based on chemical composition of fluids (an example on Volga-Ural Petroleum and Gas Province)
Current problems in mature oil fields are high water cut and flow profile estimating of oil and associated brines from different layers. To establish the flow profile in production wells, geophysical research (Production Logging) is traditionally used by lowering special equipment into the well. Pro...
Gespeichert in:
Veröffentlicht in: | Georesursy 2023-12, Vol.25 (4), p.121-123 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng ; rus |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Current problems in mature oil fields are high water cut and flow profile estimating of oil and associated brines from different layers. To establish the flow profile in production wells, geophysical research (Production Logging) is traditionally used by lowering special equipment into the well. Production Logging requires production stops and labor costs. Geochemical methods (Production Geochemistry) are used as an alternative solution: sampling is simple and efficient, which makes it possible to cover all the interesting area. Moreover, sampling does not require stopping the well. The geochemical method uses individual indicators of the composition of formation fluids produced from different perforation intervals. In this work, geochemical studies were carried out using wellhead samples from more than 100 wells, with single perforation for carbonate and terrigenous reservoirs. Some wells have joint exploitation of these formations. An automated algorithm was used to identify the distinctive characteristics of each formation based on the composition of the produced brines and oils. Data on the chemical composition of fluids from different development objects made it possible to determine the flow profiles in wells with joint production. Based on the results of the studies, the Devonian reservoir of the field under consideration is divided into 2 parts – northern and southern, which differ in the chemical composition of formation fluids. The same separation of the deposits into 2 parts is noted by field development analysis: over the past 50 years, the main production of oil and associated brines has been concentrated in the southern part of the deposit, confined to the fault, where the active work of the aquifer is assumed. It is recommended to use the obtained data for history matching of the reservoir simulation model. |
---|---|
ISSN: | 1608-5043 1608-5078 |
DOI: | 10.18599/grs.2023.4.9 |