Microscopic strain localisation in WAAM Ti-6Al-4V during uniaxial tensile loading

Wire Arc-Based Additive manufacturing is a high deposition rate process suitable for building large-scale aerospace components. However, the larger heat source can cause greater microstructural heterogeneity and, in particular, a coarse columnar ß grain structure. The effect of the subsequent relate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:MATEC web of conferences 2020, Vol.321, p.3008
Hauptverfasser: Lunt, David, Ho, Alistair, Davis, Alec, Martina, Filomeno, Hönnige, Jan, Quinta da Fonseca, João, Prangnell, Phillip
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Wire Arc-Based Additive manufacturing is a high deposition rate process suitable for building large-scale aerospace components. However, the larger heat source can cause greater microstructural heterogeneity and, in particular, a coarse columnar ß grain structure. The effect of the subsequent related transformation microstructure heterogeneity on the mechanical behaviour is investigated, in both standard WAAM materials and samples subjected to inter-pass rolling, which leads to substantial ß grain refinement and texture randomisation. Full-field strain maps were produced by digital image correlation, using tensile samples loaded in different orientations. When loaded normal to the columnar grain structure, it is shown that the coarse ß grains lead to a highly heterogeneous deformation distribution, which is linked the presence of dominant hard and soft α variants in texture colonies within each parent ß grain. ß grain refinement through the application of inter-pass rolling was found to be very effective at homogenising the strain localisation for all test orientations.
ISSN:2261-236X
2274-7214
2261-236X
DOI:10.1051/matecconf/202032103008