Gene expression in the epileptic (EL) mouse hippocampus
The neuropathology of hippocampal seizure foci in human temporal lobe epilepsy (TLE) and several animal models of epilepsy reveal extensive neuronal loss along with astrocyte and microglial activation. Studies of these models have advanced hypotheses that propose both pathological changes are essent...
Gespeichert in:
Veröffentlicht in: | Neurobiology of disease 2021-01, Vol.147, p.105152-105152, Article 105152 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The neuropathology of hippocampal seizure foci in human temporal lobe epilepsy (TLE) and several animal models of epilepsy reveal extensive neuronal loss along with astrocyte and microglial activation. Studies of these models have advanced hypotheses that propose both pathological changes are essential for seizure generation. However, some seizure foci in human TLE show an extreme loss of neurons in all hippocampal fields, giving weight to hypotheses that favor neuroglia as major players. The epileptic (EL) mouse is a seizure model in which there is no observable neuron loss but associated proliferation of microglia and astrocytes and provides a good model to study the role of activated neuroglia in the presence of an apparently normal population of neurons. While many studies have been carried out on the EL mouse, there is a paucity of studies on the molecular changes in the EL mouse hippocampus, which may provide insight on the role of neuroglia in epileptogenesis. In this paper we have applied high throughput gene expression analysis to identify the molecular changes in the hippocampus that may explain the pathological processes. We have observed several classes of genes whose expression levels are changed. It is hypothesized that the upregulation of heat shock proteins (HSP70, HSP72, FOSL2 (HSP40), and their molecular chaperones BAG3 and DNAJB5 along with the down regulated gene MALAT1 may contribute to the neuroprotection observed. The increased expression of BDNF along with immediate early gene expression (FosB, JunB, ERG4, NR4A1, NR4A2, FBXO3) and the down regulation of GABRD, DBP and MALAT1 it is hypothesized may contribute to the hyperexcitability of the hippocampal neurons in this model. Activated astrocytes and microglia may also contribute to excitability pathomechanisms. Activated astrocytes in the ELS mouse are deficient in glutamine synthetase and thus reduce the clearance of extracellular glutamate. Activated microglia which may be associated with C1Q and MHC class I molecules we propose may mediate a process of selective removal of defective GABAergic synapses through a process akin to trogocytosis that may reduce neuronal inhibition and favor hyperexcitability.
•The hippocampus is a critical locus of seizure initiation in temporal lobe epilepsy.•Neural and neuroglial changes are seen in most epileptogenic seizure foci.•The Epileptic (EL) mouse uniquely has no neuronal loss but neuroglial proliferation.•Molecular changes in glia and neuron |
---|---|
ISSN: | 0969-9961 1095-953X |
DOI: | 10.1016/j.nbd.2020.105152 |