Determination of rheology and surface tension of airway surface liquid: a review of clinical relevance and measurement techniques

By airway surface liquid, we mean a thin fluid continuum consisting of the airway lining layer and the alveolar lining layer, which not only serves as a protective barrier against foreign particles but also contributes to maintaining normal respiratory mechanics. In recent years, measurements of the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Respiratory research 2019-12, Vol.20 (1), p.274-14, Article 274
Hauptverfasser: Chen, Zhenglong, Zhong, Ming, Luo, Yuzhou, Deng, Linhong, Hu, Zhaoyan, Song, Yuanlin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:By airway surface liquid, we mean a thin fluid continuum consisting of the airway lining layer and the alveolar lining layer, which not only serves as a protective barrier against foreign particles but also contributes to maintaining normal respiratory mechanics. In recent years, measurements of the rheological properties of airway surface liquid have attracted considerable clinical attention due to new advances in microrheology instruments and methods. This article reviews the clinical relevance of measurements of airway surface liquid viscoelasticity and surface tension from four main aspects: maintaining the stability of the airways and alveoli, preventing ventilator-induced lung injury, optimizing surfactant replacement therapy for respiratory syndrome distress, and characterizing the barrier properties of airway mucus to improve drug and gene delivery. Primary measuring techniques and methods suitable for determining the viscoelasticity and surface tension of airway surface liquid are then introduced with respect to principles, advantages and limitations. Cone and plate viscometers and particle tracking microrheometers are the most commonly used instruments for measuring the bulk viscosity and microviscosity of airway surface liquid, respectively, and pendant drop methods are particularly suitable for the measurement of airway surface liquid surface tension in vitro. Currently, in vivo and in situ measurements of the viscoelasticity and surface tension of the airway surface liquid in humans still presents many challenges.
ISSN:1465-993X
1465-9921
1465-993X
1465-9921
DOI:10.1186/s12931-019-1229-1