Characterizing which Powers of Hypercubes and Folded Hyper- cubes Are Divisor Graphs
In this paper, we show that Q is a divisor graph, for n = 2, 3. For n ≥ 4, we show that Q is a divisor graph iff k ≥ n − 1. For folded-hypercube, we get FQ is a divisor graph when n is odd. But, if n ≥ 4 is even integer, then FQ is not a divisor graph. For n ≥ 5, we show that (FQ is not a divisor gr...
Gespeichert in:
Veröffentlicht in: | Discussiones Mathematicae. Graph Theory 2015-05, Vol.35 (2), p.301-311 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we show that Q
is a divisor graph, for n = 2, 3. For n ≥ 4, we show that Q
is a divisor graph iff k ≥ n − 1. For folded-hypercube, we get FQ
is a divisor graph when n is odd. But, if n ≥ 4 is even integer, then FQ
is not a divisor graph. For n ≥ 5, we show that (FQ
is not a divisor graph, where 2 ≤ k ≤ [n/2] − 1. |
---|---|
ISSN: | 2083-5892 |
DOI: | 10.7151/dmgt.1801 |