Characterizing which Powers of Hypercubes and Folded Hyper- cubes Are Divisor Graphs

In this paper, we show that Q is a divisor graph, for n = 2, 3. For n ≥ 4, we show that Q is a divisor graph iff k ≥ n − 1. For folded-hypercube, we get FQ is a divisor graph when n is odd. But, if n ≥ 4 is even integer, then FQ is not a divisor graph. For n ≥ 5, we show that (FQ is not a divisor gr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discussiones Mathematicae. Graph Theory 2015-05, Vol.35 (2), p.301-311
Hauptverfasser: AbuHijleh, Eman A., AbuGhneim, Omar A., Al-Ezeh, Hasan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we show that Q is a divisor graph, for n = 2, 3. For n ≥ 4, we show that Q is a divisor graph iff k ≥ n − 1. For folded-hypercube, we get FQ is a divisor graph when n is odd. But, if n ≥ 4 is even integer, then FQ is not a divisor graph. For n ≥ 5, we show that (FQ is not a divisor graph, where 2 ≤ k ≤ [n/2] − 1.
ISSN:2083-5892
DOI:10.7151/dmgt.1801