Velocity and Out-Step Frequencies for a Micro-Swimmer Based on Spiral Carbon Nanotubes

The existing producing processes of micro spiral swimmers are complex. Here, a microswimmer with a magnetic layer on the surface of the spiral carbon nanotubes is proposed, which has a simple producing process. For the microswimmer, its equations of the velocities and out-step frequency are deduced....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Micromachines (Basel) 2023-06, Vol.14 (7), p.1320
Hauptverfasser: Zhang, Ce, Ma, Shiqi, Xu, Lizhong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The existing producing processes of micro spiral swimmers are complex. Here, a microswimmer with a magnetic layer on the surface of the spiral carbon nanotubes is proposed, which has a simple producing process. For the microswimmer, its equations of the velocities and out-step frequency are deduced. Using these equations, the velocities and out-step frequency of the microswimmer and their changes with related parameters are investigated. Results show that its velocities are proportional to the radius and helix angle of the spiral carbon nanotubes, and its out-step frequencies are proportional to magnetic field strength, the helix angle and magnetic layer thicknesses of the spiral carbon nanotubes, and inversely proportional to the fluid viscosity. The out-step frequency of the microswimmer is measured, which is in good agreement with the calculative ones.
ISSN:2072-666X
2072-666X
DOI:10.3390/mi14071320