YOLOv8-GABNet: An Enhanced Lightweight Network for the High-Precision Recognition of Citrus Diseases and Nutrient Deficiencies
Existing deep learning models for detecting citrus diseases and nutritional deficiencies grapple with issues related to recognition accuracy, complex backgrounds, occlusions, and the need for lightweight architecture. In response, we developed an improved YOLOv8-GABNet model designed specifically fo...
Gespeichert in:
Veröffentlicht in: | Agriculture (Basel) 2024-11, Vol.14 (11), p.1964 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Existing deep learning models for detecting citrus diseases and nutritional deficiencies grapple with issues related to recognition accuracy, complex backgrounds, occlusions, and the need for lightweight architecture. In response, we developed an improved YOLOv8-GABNet model designed specifically for citrus disease and nutritional deficiency detection, which effectively addresses these challenges. This model incorporates several key enhancements: A lightweight ADown subsampled convolutional block is utilized to reduce both the model’s parameter count and its computational demands, replacing the traditional convolutional module. Additionally, a weighted Bidirectional Feature Pyramid Network (BiFPN) supersedes the original feature fusion network, enhancing the model’s ability to manage complex backgrounds and achieve multiscale feature extraction and integration. Furthermore, we introduced important features through the Global to Local Spatial Aggregation module (GLSA), focusing on crucial image details to enhance both the accuracy and robustness of the model. This study processed the collected images, resulting in a dataset of 1102 images. Using LabelImg, bounding boxes were applied to annotate leaves affected by diseases. The dataset was constructed to include three types of citrus diseases—anthracnose, canker, and yellow vein disease—as well as two types of nutritional deficiencies, namely magnesium deficiency and manganese deficiency. This dataset was expanded to 9918 images through data augmentation and was used for experimental validation. The results show that, compared to the original YOLOv8, our YOLOv8-GABNet model reduces the parameter count by 43.6% and increases the mean Average Precision (mAP50) by 4.3%. Moreover, the model size was reduced from 50.1 MB to 30.2 MB, facilitating deployment on mobile devices. When compared with mainstream models like YOLOv5s, Faster R-CNN, SSD, YOLOv9t, and YOLOv10n, the YOLOv8-GABNet model demonstrates superior performance in terms of size and accuracy, offering an optimal balance between performance, size, and speed. This study confirms that the model effectively identifies the common diseases and nutritional deficiencies of citrus from Conghua’s “Citrus Planet”. Future deployment to mobile devices will provide farmers with instant and precise support. |
---|---|
ISSN: | 2077-0472 2077-0472 |
DOI: | 10.3390/agriculture14111964 |