q-deformed rational numbers and the 2-Calabi–Yau category of type $A_{2}

We describe a family of compactifications of the space of Bridgeland stability conditions of a triangulated category, following earlier work by Bapat, Deopurkar and Licata. We particularly consider the case of the 2-Calabi–Yau category of the $A_2$ quiver. The compactification is the closure of an e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Forum of mathematics. Sigma 2023-06, Vol.11, Article e47
Hauptverfasser: Bapat, Asilata, Becker, Louis, Licata, Anthony M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We describe a family of compactifications of the space of Bridgeland stability conditions of a triangulated category, following earlier work by Bapat, Deopurkar and Licata. We particularly consider the case of the 2-Calabi–Yau category of the $A_2$ quiver. The compactification is the closure of an embedding (depending on q) of the stability space into an infinite-dimensional projective space. In the $A_2$ case, the three-strand braid group $B_3$ acts on this closure. We describe two distinguished braid group orbits in the boundary, points of which can be identified with certain rational functions in q. Points in one of the orbits are exactly the q-deformed rational numbers recently introduced by Morier-Genoud and Ovsienko, while the other orbit gives a new q-deformation of the rational numbers. Specialising q to a positive real number, we obtain a complete description of the boundary of the compactification.
ISSN:2050-5094
2050-5094
DOI:10.1017/fms.2023.32