Monte Carlo model for neutrino-nucleus interactions: past, present and future

Quantum Chromodynamics (QCD) is the correct theory of strong interactions. The main direction of investigations in physics of elementary particles and nuclear physics is testing of QCD. QCD predicts that at high energy density there will be a transformation from ordinary nuclear matter to a plasma o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:EPJ Web of Conferences 2019, Vol.204, p.6013
Hauptverfasser: Eliseev, Sergey M., Yuldashev, Bekhzad S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Quantum Chromodynamics (QCD) is the correct theory of strong interactions. The main direction of investigations in physics of elementary particles and nuclear physics is testing of QCD. QCD predicts that at high energy density there will be a transformation from ordinary nuclear matter to a plasma of free quarks and gluons, the Quark-Gluon Plasma (QGP). In order to reach new knowledge of QCD from the interaction of relativistic heavy ions, one needs directly comparable data sets from systems of various sizes, different energies and different experimental probes. Lepton-nucleus scattering provides a nontrivial possibility to study space-time evolution of jets inside the nuclear matter. Using QCD-inspired time dependent cross sections for pre-hadrons we have introduced a space-time model for propagation and hadronization of quark and gluon jets in the nuclear matter in DIS. The aim of this work is to examine a multiproduction process of charged-current deep inelastic v μ -nucleus and nuclear emulsion scattering and estimate quantitatively the value of the formation time. These studies may help to explain the jet quenching in heavy ion collisions. In conclusion, the role of neutrino generators in modern neutrino experiments with nuclear targets will be discussed.
ISSN:2100-014X
2101-6275
2100-014X
DOI:10.1051/epjconf/201920406013