Cluster analysis integrating age and body temperature for mortality in patients with sepsis: a multicenter retrospective study
It is not clear whether mortality is associated with body temperature (BT) in older sepsis patients. This study aimed to evaluate the mortality rates in sepsis patients according to age and BT and identify the risk factors for mortality. We investigated the clusters using a machine learning method b...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2022-01, Vol.12 (1), p.1090-9, Article 1090 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | It is not clear whether mortality is associated with body temperature (BT) in older sepsis patients. This study aimed to evaluate the mortality rates in sepsis patients according to age and BT and identify the risk factors for mortality. We investigated the clusters using a machine learning method based on a combination of age and BT, and identified the mortality rates according to these clusters. This retrospective multicenter study was conducted at five hospitals in Korea. Data of sepsis patients aged ≥ 18 years who were admitted to the intensive care unit between January 1, 2011 and April 30, 2021 were collected. BT was divided into three groups (hypothermia 38 °C), and age groups were divided using a 75-year age threshold. Kaplan‒Meier analysis was performed to assess the cumulative mortality over 90 days. A K-means clustering algorithm using age and BT was used to characterize phenotypes. During the study period, 15,574 sepsis patients were enrolled. Overall, 90-day mortality was 20.5%. Kaplan‒Meier survival analyses demonstrated that 90-day mortality rates were 27.4%, 19.6%, and 11.9% in the hypothermia, normothermia, and hyperthermia groups, respectively, in those ≥ 75 years old (Log-rank
p
|
---|---|
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-022-05088-z |