Assessing Lodging Severity over an Experimental Maize (Zea mays L.) Field Using UAS Images
Lodging has been recognized as one of the major destructive factors for crop quality and yield, resulting in an increasing need to develop cost-efficient and accurate methods for detecting crop lodging in a routine manner. Using structure-from-motion (SfM) and novel geospatial computing algorithms,...
Gespeichert in:
Veröffentlicht in: | Remote sensing (Basel, Switzerland) Switzerland), 2017-09, Vol.9 (9), p.923 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Lodging has been recognized as one of the major destructive factors for crop quality and yield, resulting in an increasing need to develop cost-efficient and accurate methods for detecting crop lodging in a routine manner. Using structure-from-motion (SfM) and novel geospatial computing algorithms, this study investigated the potential of high resolution imaging with unmanned aircraft system (UAS) technology for detecting and assessing lodging severity over an experimental maize field at the Texas A&M AgriLife Research and Extension Center in Corpus Christi, Texas, during the 2016 growing season. The method was proposed to not only detect the occurrence of lodging at the field scale, but also to quantitatively estimate the number of lodged plants and the lodging rate within individual rows. Nadir-view images of the field trial were taken by multiple UAS platforms equipped with consumer grade red, green, and blue (RGB), and near-infrared (NIR) cameras on a routine basis, enabling a timely observation of the plant growth until harvesting. Models of canopy structure were reconstructed via an SfM photogrammetric workflow. The UAS-estimated maize height was characterized by polygons developed and expanded from individual row centerlines, and produced reliable accuracy when compared against field measures of height obtained from multiple dates. The proposed method then segmented the individual maize rows into multiple grid cells and determined the lodging severity based on the height percentiles against preset thresholds within individual grid cells. From the analysis derived from this method, the UAS-based lodging results were generally comparable in accuracy to those measured by a human data collector on the ground, measuring the number of lodging plants (R2 = 0.48) and the lodging rate (R2 = 0.50) on a per-row basis. The results also displayed a negative relationship of ground-measured yield with UAS-estimated and ground-measured lodging rate. |
---|---|
ISSN: | 2072-4292 2072-4292 |
DOI: | 10.3390/rs9090923 |