Experimental investigation and modelling of biodiesel combustion in engines with late direct injection strategy

The combination of alternate fuels, such as biodiesel, and low-temperature combustion (LTC) constitutes a promising solution to reduce pollutant emission and to avoid dependence on fossil fuels. However, this concept requires additional research to optimise LTC of biodiesel over wider operating rang...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy reports 2022-11, Vol.8, p.7476-7487
Hauptverfasser: Godiño, José Antonio Vélez, García, Miguel Torres, Aguilar, Francisco José Jiménez-Espadafor
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The combination of alternate fuels, such as biodiesel, and low-temperature combustion (LTC) constitutes a promising solution to reduce pollutant emission and to avoid dependence on fossil fuels. However, this concept requires additional research to optimise LTC of biodiesel over wider operating ranges, specifically including the implementation of numerical models to assist in the development of these engines. In this work, an experimental analysis was carried out assessing both thermal performance and emissions derived from the LTC of diesel/biodiesel blends with late direct injection. Furthermore, this analysis allowed implementing a predictive tool to characterise in-cylinder pressure trace under this operation strategy. This model was coupled with an empirical law to simulate heat release during the combustion process. Least squares method was applied to fit this empirical law to experimental data involving different conditions in terms of percentages of rapeseed biodiesel in the fuel blend, rotational speed, fuel/air equivalence ratio and percentages of external exhaust gas recirculation. To build the predictive model, a multiple regression methodology was used to correlate the law parameters with the operating conditions. Finally, a validation process based on the simulation of in-cylinder pressure trace was developed, revealing that the predictions agreed well with the experimental data. This suggests that the proposed model is able to satisfactorily predict the LTC of diesel/biodiesel blends within the test range. •Compression ignition engine with late direct injection and diesel/biodiesel blends.•A significant reduction in emitted nitrogen oxides was achieved.•A double-Wiebe heat release rate model was fitted to experimental data.•The developed model was able to satisfactorily predict the biodiesel combustion.
ISSN:2352-4847
2352-4847
DOI:10.1016/j.egyr.2022.05.279