Advances in the Co-Simulation of Detailed Electrical and Whole-Building Energy Performance
This article describes recent co-simulation advances for the simultaneous modeling of detailed building electrical distribution systems and whole-building energy performance. The co-simulation architecture combines the EnergyPlus® engine for whole-building energy modeling with a new Modelica library...
Gespeichert in:
Veröffentlicht in: | Energies (Basel) 2023-09, Vol.16 (17), p.6284 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This article describes recent co-simulation advances for the simultaneous modeling of detailed building electrical distribution systems and whole-building energy performance. The co-simulation architecture combines the EnergyPlus® engine for whole-building energy modeling with a new Modelica library for building an electrical distribution system model that is based on harmonic power flow. This new library allows for a higher-fidelity modeling of electrical power flows and losses within buildings than is available with current building electrical modeling software. We demonstrate the feasibility of the architecture by modeling a simple, two-zone thermal chamber with internal power electronics converters and resistive loads, and we validate the model using experimental data. The proposed co-simulation capability significantly expands the capabilities of building electrical distribution system models in the context of whole-building energy modeling, thus enabling more complex analyses than would have been possible with individual building performance simulation tools that are used to date. |
---|---|
ISSN: | 1996-1073 1996-1073 |
DOI: | 10.3390/en16176284 |