Novel human models for elucidating mechanisms of rate-sensitive H-reflex depression
This study used novel human neurophysiologic models to investigate whether the mechanism of rate-sensitive H-reflex depression lies in the pre-synaptic or post-synaptic locus in humans. We hypothesized that pre-synaptic inhibition would suppress Ia afferents and H-reflexes without suppressing alpha...
Gespeichert in:
Veröffentlicht in: | Biomedical Journal 2020-02, Vol.43 (1), p.44-52 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This study used novel human neurophysiologic models to investigate whether the mechanism of rate-sensitive H-reflex depression lies in the pre-synaptic or post-synaptic locus in humans. We hypothesized that pre-synaptic inhibition would suppress Ia afferents and H-reflexes without suppressing alpha motor neurons or motor evoked potentials (MEPs). In contrast, post-synaptic inhibition would suppress alpha motor neurons, thereby reducing H-reflexes and MEPs.
We recruited 23 healthy adults with typical rate-sensitive H-reflex depression, 2 participants with acute sensory-impaired spinal cord injury (SCI) (to rule out influence of sensory stimulation on supra-spinal excitability), and an atypical cohort of 5 healthy adults without rate-sensitive depression. After a single electrical stimulation to the tibial nerve, we administered either a testing H-reflex or a testing MEP at 50–5000 ms intervals.
Testing MEPs were not diminished in healthy subjects with or without typical rate-sensitive H-reflex depression, or in subjects with sensory-impaired SCI. MEP responses were similar in healthy subjects with versus without rate-sensitive H-reflex depression.
Results from these novel in vivo human models support a pre-synaptic locus of rate-sensitive H-reflex depression for the first time in humans. Spinal reflex excitability can be modulated separately from descending corticospinal influence. Each represents a potential target for neuromodulatory intervention. |
---|---|
ISSN: | 2319-4170 2320-2890 |
DOI: | 10.1016/j.bj.2019.07.007 |