Low‐Power Memristive Logic Device Enabled by Controllable Oxidation of 2D HfSe2 for In‐Memory Computing
Memristive logic device is a promising unit for beyond von Neumann computing systems and 2D materials are widely used because of their controllable interfacial properties. Most of these 2D memristive devices, however, are made from semiconducting chalcogenides which fail to gate the off‐state curren...
Gespeichert in:
Veröffentlicht in: | Advanced science 2021-08, Vol.8 (15), p.e2005038-n/a |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Memristive logic device is a promising unit for beyond von Neumann computing systems and 2D materials are widely used because of their controllable interfacial properties. Most of these 2D memristive devices, however, are made from semiconducting chalcogenides which fail to gate the off‐state current. To this end, a crossbar device using 2D HfSe2 is fabricated, and then the top layers are oxidized into “high‐k” dielectric HfSexOy via oxygen plasma treatment, so that the cell resistance can be remarkably increased. This two‐terminal Ti/HfSexOy/HfSe2/Au device exhibits excellent forming‐free resistive switching performance with high switching speed ( |
---|---|
ISSN: | 2198-3844 2198-3844 |
DOI: | 10.1002/advs.202005038 |