On p-adic Integral Representation of q-Bernoulli Numbers Arising from Two Variable q-Bernstein Polynomials

The q-Bernoulli numbers and polynomials can be given by Witt’s type formulas as p-adic invariant integrals on Z p . We investigate some properties for them. In addition, we consider two variable q-Bernstein polynomials and operators and derive several properties for these polynomials and operators....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry (Basel) 2018-10, Vol.10 (10), p.451
Hauptverfasser: Kim, Dae, Kim, Taekyun, Ryoo, Cheon, Yao, Yonghong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The q-Bernoulli numbers and polynomials can be given by Witt’s type formulas as p-adic invariant integrals on Z p . We investigate some properties for them. In addition, we consider two variable q-Bernstein polynomials and operators and derive several properties for these polynomials and operators. Next, we study the evaluation problem for the double integrals on Z p of two variable q-Bernstein polynomials and show that they can be expressed in terms of the q-Bernoulli numbers and some special values of q-Bernoulli polynomials. This is generalized to the problem of evaluating any finite product of two variable q-Bernstein polynomials. Furthermore, some identities for q-Bernoulli numbers are found.
ISSN:2073-8994
2073-8994
DOI:10.3390/sym10100451