Ultra-Wideband Radar-Based Indoor Activity Monitoring for Elderly Care

In this paper, we propose an unobtrusive method and architecture for monitoring a person’s presence and collecting his/her health-related parameters simultaneously in a home environment. The system is based on using a single ultra-wideband (UWB) impulse-radar as a sensing device. Using UWB radars, w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Switzerland), 2021-05, Vol.21 (9), p.3158
Hauptverfasser: Hämäläinen, Matti, Mucchi, Lorenzo, Caputo, Stefano, Biotti, Lorenzo, Ciani, Lorenzo, Marabissi, Dania, Patrizi, Gabriele
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we propose an unobtrusive method and architecture for monitoring a person’s presence and collecting his/her health-related parameters simultaneously in a home environment. The system is based on using a single ultra-wideband (UWB) impulse-radar as a sensing device. Using UWB radars, we aim to recognize a person and some preselected movements without camera-type monitoring. Via the experimental work, we have also demonstrated that, by using a UWB signal, it is possible to detect small chest movements remotely to recognize coughing, for example. In addition, based on statistical data analysis, a person’s posture in a room can be recognized in a steady situation. In addition, we implemented a machine learning technique (k-nearest neighbour) to automatically classify a static posture using UWB radar data. Skewness, kurtosis and received power are used in posture classification during the postprocessing. The classification accuracy achieved is more than 99%. In this paper, we also present reliability and fault tolerance analyses for three kinds of UWB radar network architectures to point out the weakest item in the installation. This information is highly important in the system’s implementation.
ISSN:1424-8220
1424-8220
DOI:10.3390/s21093158