System Performance Analysis for Trimmable Horizontal Stabilizer Actuator Focusing on Nonlinear Effects: Based on Incremental Modelling and Parameter Identification Methodology

With the development of more/all electric aircraft, replacement of the traditional hydraulic servo actuator (HSA) with an electromechanical actuator (EMA) is becoming increasingly attractive in the aerospace field. This paper takes an EMA for a trimmable horizontal stabilizer as an example and focus...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Switzerland), 2021-09, Vol.21 (19), p.6464
Hauptverfasser: Zhang, Wensen, Fu, Jian, Fu, Yongling, Zhou, Jinlin, Han, Xudong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:With the development of more/all electric aircraft, replacement of the traditional hydraulic servo actuator (HSA) with an electromechanical actuator (EMA) is becoming increasingly attractive in the aerospace field. This paper takes an EMA for a trimmable horizontal stabilizer as an example and focuses on how to establish a system model with an appropriate level of complexity to support the model-based system engineering (MBSE) approach. To distinguish the nonlinear effects that dominate the required system performance, an incremental approach is proposed to progressively introduce individual nonlinear effects into models with different complexity levels. Considering the special design and working principle of the mechanical power transmission function for this actuator, the nonlinear dynamics, including friction and backlash from the no-back mechanism, and the nonlinear compliance effect from the mechanical load path are mainly taken into consideration. The modelling principles for each effect are addressed in detail and the parameter identification method is utilized to model these nonlinear effects realistically. Finally, the responses from each model and experimental results are compared to analyze and verify how each individual nonlinearity affects the system’s performance.
ISSN:1424-8220
1424-8220
DOI:10.3390/s21196464