Unsupervised Assessment of Balance and Falls Risk Using a Smartphone and Machine Learning

Assessment of health and physical function using smartphones (mHealth) has enormous potential due to the ubiquity of smartphones and their potential to provide low cost, scalable access to care as well as frequent, objective measurements, outside of clinical environments. Validation of the algorithm...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Switzerland), 2021-07, Vol.21 (14), p.4770
Hauptverfasser: Greene, Barry R., McManus, Killian, Ader, Lilian Genaro Motti, Caulfield, Brian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Assessment of health and physical function using smartphones (mHealth) has enormous potential due to the ubiquity of smartphones and their potential to provide low cost, scalable access to care as well as frequent, objective measurements, outside of clinical environments. Validation of the algorithms and outcome measures used by mHealth apps is of paramount importance, as poorly validated apps have been found to be harmful to patients. Falls are a complex, common and costly problem in the older adult population. Deficits in balance and postural control are strongly associated with falls risk. Assessment of balance and falls risk using a validated smartphone app may lessen the need for clinical assessments which can be expensive, requiring non-portable equipment and specialist expertise. This study reports results for the real-world deployment of a smartphone app for self-directed, unsupervised assessment of balance and falls risk. The app relies on a previously validated algorithm for assessment of balance and falls risk; the outcome measures employed were trained prior to deployment on an independent data set. Results for a sample of 594 smartphone assessments from 147 unique phones show a strong association between self-reported falls history and the falls risk and balance impairment scores produced by the app, suggesting they may be clinically useful outcome measures. In addition, analysis of the quantitative balance features produced seems to suggest that unsupervised, self-directed assessment of balance in the home is feasible.
ISSN:1424-8220
1424-8220
DOI:10.3390/s21144770