Task-induced subjective fatigue and resting-state striatal connectivity following traumatic brain injury

•Fatigue is a very frequent and disabling symptom in traumatic brain injury (TBI).•Effects of task-induced fatigue on resting-state functional connectivity (rsFC).•Striatal rsFC relates differently to subjective fatigue in TBI compared to controls.•Default mode network rsFC relates similar to subjec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:NeuroImage clinical 2022-01, Vol.33, p.102936-102936, Article 102936
Hauptverfasser: Bruijel, J., Quaedflieg, C.W.E.M., Otto, T., van de Ven, V., Stapert, S.Z., van Heugten, C., Vermeeren, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:•Fatigue is a very frequent and disabling symptom in traumatic brain injury (TBI).•Effects of task-induced fatigue on resting-state functional connectivity (rsFC).•Striatal rsFC relates differently to subjective fatigue in TBI compared to controls.•Default mode network rsFC relates similar to subjective fatigue in TBI and controls. People with traumatic brain injury (TBI) often experience fatigue, but an understanding of the neural underpinnings of fatigue following TBI is still lacking. This study used resting-state functional magnetic resonance imaging (rs-fMRI) to examine associations between functional connectivity (FC) changes and task-induced changes in subjective fatigue in people with moderate-severe TBI. Sixteen people with moderate-severe TBI and 17 matched healthy controls (HC) performed an adaptive N-back task (working memory task) to induce cognitive fatigue. Before and after the task they rated their state fatigue level and underwent rs-fMRI. Seed-to-voxel analyses with seeds in areas involved in cognitive fatigue, namely the striatum and default mode network (DMN) including, medial prefrontal cortex and posterior cingulate cortex, were performed. The adaptive N-back task was effective in inducing fatigue in both groups. Subjective task-induced fatigue was positively associated with FC between striatum and precuneus in people with TBI, while there was a negative association in HC. In contrast, subjective task-induced fatigue was negatively associated with FC between striatum and cerebellum in the TBI group, while there was no association in HC. Similar associations between task-induced subjective fatigue and DMN FC were found across the groups. Our results suggest that the subjective experience of fatigue was linked to DMN connectivity in both groups and was differently associated with striatal connectivity in people with moderate-severe TBI compared to HC. Defining fatigue-induced neuronal network changes is pertinent to the development of treatments that target abnormal neuronal activity after TBI.
ISSN:2213-1582
2213-1582
DOI:10.1016/j.nicl.2022.102936