Differential Geometric Aspects of Parametric Estimation Theory for States on Finite-Dimensional C ∗ -Algebras

A geometrical formulation of estimation theory for finite-dimensional C∗-algebras is presented. This formulation allows to deal with the classical and quantum case in a single, unifying mathematical framework. The derivation of the Cramer-Rao and Helstrom bounds for parametric statistical models wit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Entropy (Basel, Switzerland) Switzerland), 2020-11, Vol.22 (11), p.1332
Hauptverfasser: Ciaglia, Florio M, Jost, Jürgen, Schwachhöfer, Lorenz
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A geometrical formulation of estimation theory for finite-dimensional C∗-algebras is presented. This formulation allows to deal with the classical and quantum case in a single, unifying mathematical framework. The derivation of the Cramer-Rao and Helstrom bounds for parametric statistical models with discrete and finite outcome spaces is presented.
ISSN:1099-4300
1099-4300
DOI:10.3390/e22111332