Differential Geometric Aspects of Parametric Estimation Theory for States on Finite-Dimensional C ∗ -Algebras
A geometrical formulation of estimation theory for finite-dimensional C∗-algebras is presented. This formulation allows to deal with the classical and quantum case in a single, unifying mathematical framework. The derivation of the Cramer-Rao and Helstrom bounds for parametric statistical models wit...
Gespeichert in:
Veröffentlicht in: | Entropy (Basel, Switzerland) Switzerland), 2020-11, Vol.22 (11), p.1332 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A geometrical formulation of estimation theory for finite-dimensional C∗-algebras is presented. This formulation allows to deal with the classical and quantum case in a single, unifying mathematical framework. The derivation of the Cramer-Rao and Helstrom bounds for parametric statistical models with discrete and finite outcome spaces is presented. |
---|---|
ISSN: | 1099-4300 1099-4300 |
DOI: | 10.3390/e22111332 |