Production and Analysis of Recycled Ammonium Perrhenate from CMSX-4 superalloys

The process to extract rhenium from a superalloy is an immense technical challenge due the complex chemistry involved. Being one of the rarest elements in the earth’s crust the scarcity and cost of rhenium makes it advantageous to recover the element from scrap superalloy. In this research the separ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Open Chemistry 2018-01, Vol.16 (1), p.1298-1306
Hauptverfasser: Gonzalez-Rodriguez, J., Pepper, Katherine, Baron, M.G., Mamo, S.K., Simons, A.M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The process to extract rhenium from a superalloy is an immense technical challenge due the complex chemistry involved. Being one of the rarest elements in the earth’s crust the scarcity and cost of rhenium makes it advantageous to recover the element from scrap superalloy. In this research the separation and monitoring of the different stages of the recycling process to extract rhenium from CMSX-4 superalloys using a distillation process were performed. This novel method combining distillation and use of exchange resins was used to separate rhenium from a complex mixture of metals in the CMSX-4 superalloy. The identification and quantitation of perrhenate and contaminants were performed by atomic absorption spectroscopy (AAS), Fourier transform infrared spectroscopy (FTIR), ion chromatography (IC) and Scanning Electron Microscopy- Energy Dispersive X-Ray (SEM-EDX). Perrhenate ions were extracted with purity close to 93%. The analytical characteristics for a novel infrared method to quickly identify perrhenate anions from CMSX-4 are presented. The main characteristics of the analytical validation were: LoD: 0.5% w/w; LoQ: 1.5% w/w; linear range 1.5-100% w/w; correlation coefficient R = 0.9905; precision (%RSD) for 10%w/w = 6.6 and 75%w/w = 4.1, respectively; accuracy (%) for 10% w/w 99.6% and 75% w/w=101.1, respectively.
ISSN:2391-5420
2391-5420
DOI:10.1515/chem-2018-0136