Photochemistry of the pyruvate anion produces CO2, CO, CH3–, CH3, and a low energy electron
The photochemistry of pyruvic acid has attracted much scientific interest because it is believed to play critical roles in atmospheric chemistry. However, under most atmospherically relevant conditions, pyruvic acid deprotonates to form its conjugate base, the photochemistry of which is essentially...
Gespeichert in:
Veröffentlicht in: | Nature communications 2022-02, Vol.13 (1), p.937-937, Article 937 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The photochemistry of pyruvic acid has attracted much scientific interest because it is believed to play critical roles in atmospheric chemistry. However, under most atmospherically relevant conditions, pyruvic acid deprotonates to form its conjugate base, the photochemistry of which is essentially unknown. Here, we present a detailed study of the photochemistry of the isolated pyruvate anion and uncover that it is extremely rich. Using photoelectron imaging and computational chemistry, we show that photoexcitation by UVA light leads to the formation of CO
2
, CO, and CH
3
−
. The observation of the unusual methide anion formation and its subsequent decomposition into methyl radical and a free electron may hold important consequences for atmospheric chemistry. From a mechanistic perspective, the initial decarboxylation of pyruvate necessarily differs from that in pyruvic acid, due to the missing proton in the anion.
Pyruvic acid and its conjugate base, the pyruvate anion, are largely present in the atmosphere. Here the authors, using photoelectron imaging and quantum chemistry calculations, investigate the photochemistry of isolated pyruvate anions initiated by UVA radiation and report the formation of CO
2
, CO, and CH
3
−
further decomposing into CH
3
and a free electron. |
---|---|
ISSN: | 2041-1723 2041-1723 |
DOI: | 10.1038/s41467-022-28582-4 |