iiHadoop: an asynchronous distributed framework for incremental iterative computations

It is true that data is never static; it keeps growing and changing over time. New data is added and old data can either be modified or deleted. This incremental nature of data motivates the development of new systems to perform large-scale data computations incrementally. MapReduce was recently int...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of big data 2017-07, Vol.4 (1), p.1-30, Article 24
Hauptverfasser: Bin Saadon, Afaf G., Mokhtar, Hoda M. O.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:It is true that data is never static; it keeps growing and changing over time. New data is added and old data can either be modified or deleted. This incremental nature of data motivates the development of new systems to perform large-scale data computations incrementally. MapReduce was recently introduced to provide an efficient approach for handling large-scale data computations. Nevertheless, it turned to be inefficient in supporting the processing of small incremental data. While many previous systems have extended MapReduce to perform iterative or incremental computations, these systems are still inefficient and too expensive to perform large-scale iterative computations on changing data. In this paper, we present a new system called iiHadoop, an extension of Hadoop framework, optimized for incremental iterative computations. iiHadoop accelerates program execution by performing the incremental computations on the small fraction of data that is affected by changes rather than the whole data. In addition, iiHadoop improves the performance by executing iterations asynchronously, and employing locality-aware scheduling for the map and reduce tasks taking into account the incremental and iterative behavior. An evaluation for the proposed iiHadoop framework is presented using examples of iterative algorithms, and the results showed significant performance improvements over comparable existing frameworks.
ISSN:2196-1115
2196-1115
DOI:10.1186/s40537-017-0086-3