Machine learning for small interfering RNAs: a concise review of recent developments

The advent of machine learning and its subsequent integration into small interfering RNA (siRNA) research heralds a new epoch in the field of RNA interference (RNAi). This review emphasizes the urgency and relevance of assimilating the plethora of contributions and advancements in this domain, parti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Frontiers in genetics 2023-07, Vol.14, p.1226336-1226336
1. Verfasser: Lee, Minhyeok
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The advent of machine learning and its subsequent integration into small interfering RNA (siRNA) research heralds a new epoch in the field of RNA interference (RNAi). This review emphasizes the urgency and relevance of assimilating the plethora of contributions and advancements in this domain, particularly focusing on the period of 2019-2023. Given the rapid progression of deep learning technologies, our synthesis of recent research is paramount to staying apprised of the state-of-the-art methods being utilized. It not only offers a comprehensive insight into the confluence of machine learning and siRNA but also serves as a beacon, guiding future explorations in this intersectional research field. Our rigorous examination of studies promises a discerning perspective on the contemporary landscape of machine learning applications in siRNA design and function. This review is an effort to foster further discourse and propel academic inquiry in this multifaceted domain.
ISSN:1664-8021
1664-8021
DOI:10.3389/fgene.2023.1226336