Hölder Type Inequalities for Sugeno Integrals under Usual Multiplication Operations

The classical Hölder inequality shows an interesting upper bound for Lebesgue integral of the product of two functions. This paper proposes Hölder type inequalities and reverse Hölder type inequalities for Sugeno integrals under usual multiplication operations for nonincreasing concave or convex fun...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in fuzzy systems 2019-01, Vol.2019 (2019), p.1-10
Hauptverfasser: Hong, Dug Hun, Kim, Jae Duck
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The classical Hölder inequality shows an interesting upper bound for Lebesgue integral of the product of two functions. This paper proposes Hölder type inequalities and reverse Hölder type inequalities for Sugeno integrals under usual multiplication operations for nonincreasing concave or convex functions. One of the interesting results is that the inequality, (S)∫01f(x)pdμ1/p(S)∫01g(x)qdμ1/q≤p-q/p-p-q+1∨q-p/q-q-p+1(S)∫01f(x)g(x)dμ, where 1
ISSN:1687-7101
1687-711X
DOI:10.1155/2019/5080723