Occluded Pedestrian-Attribute Recognition for Video Sensors Using Group Sparsity
Pedestrians are often obstructed by other objects or people in real-world vision sensors. These obstacles make pedestrian-attribute recognition (PAR) difficult; hence, occlusion processing for visual sensing is a key issue in PAR. To address this problem, we first formulate the identification of non...
Gespeichert in:
Veröffentlicht in: | Sensors (Basel, Switzerland) Switzerland), 2022-09, Vol.22 (17), p.6626 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Pedestrians are often obstructed by other objects or people in real-world vision sensors. These obstacles make pedestrian-attribute recognition (PAR) difficult; hence, occlusion processing for visual sensing is a key issue in PAR. To address this problem, we first formulate the identification of non-occluded frames as temporal attention based on the sparsity of a crowded video. In other words, a model for PAR is guided to prevent paying attention to the occluded frame. However, we deduced that this approach cannot include a correlation between attributes when occlusion occurs. For example, “boots” and “shoe color” cannot be recognized simultaneously when the foot is invisible. To address the uncorrelated attention issue, we propose a novel temporal-attention module based on group sparsity. Group sparsity is applied across attention weights in correlated attributes. Accordingly, physically-adjacent pedestrian attributes are grouped, and the attention weights of a group are forced to focus on the same frames. Experimental results indicate that the proposed method achieved 1.18% and 6.21% higher F1-scores than the advanced baseline method on the occlusion samples in DukeMTMC-VideoReID and MARS video-based PAR datasets, respectively. |
---|---|
ISSN: | 1424-8220 1424-8220 |
DOI: | 10.3390/s22176626 |