An Efficient Dual-Stage Compression Model for Maritime Safety Information Based on BeiDou Short-Message Communication

In the context of utilizing BeiDou short-message communication (SMC) for transmitting maritime safety information, challenges arise regarding information redundancy and limited message length. To address these issues, compressing the data content of SMC becomes essential. This paper proposes a dual-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of marine science and engineering 2023-08, Vol.11 (8), p.1521
Hauptverfasser: Hu, Jiwei, Hong, Yue, Jin, Qiwen, Zhao, Guangpeng, Lu, Hongyang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the context of utilizing BeiDou short-message communication (SMC) for transmitting maritime safety information, challenges arise regarding information redundancy and limited message length. To address these issues, compressing the data content of SMC becomes essential. This paper proposes a dual-stage compression model based on Beidou SMC for compressing maritime safety information, aiming to achieve efficient compression and reduce information redundancy. In the first stage, a binary encoding method (MBE) specifically designed for maritime safety information is proposed to optimize the byte space of the short messages, ensuring the accuracy, integrity, and reliability of the information. In the second stage, we propose a data compression algorithm called XH based on a hash dictionary, which efficiently compresses maritime safety information and reduces information redundancy. Different maritime data have corresponding structures and compositions, which can have a significant impact on the evaluation of compression algorithms. We create a database considering six categories of objects: waves, sea ice, tsunamis, storms, weather, and navigation warnings. Experimental results demonstrate that the proposed model achieves significant compression efficiency and performance on the maritime safety data set, outperforming other benchmark algorithms.
ISSN:2077-1312
2077-1312
DOI:10.3390/jmse11081521