Real-Time Detection and Short-Term Prediction of Blast Furnace Burden Level Based on Space-Time Fusion Features

Real-time, continuous and accurate blast furnace burden level information is of great significance for controlling the charging process, ensuring a smooth operation of a blast furnace, reducing energy consumption and emissions and improving blast furnace output. However, the burden level information...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Switzerland), 2022-07, Vol.22 (14), p.5412
Hauptverfasser: Chen, Yanli, Chen, Zhipeng, Gui, Weihua, Yang, Chunhua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Real-time, continuous and accurate blast furnace burden level information is of great significance for controlling the charging process, ensuring a smooth operation of a blast furnace, reducing energy consumption and emissions and improving blast furnace output. However, the burden level information measured by conventional mechanical stock rods and radar probes exhibit problems of weak anti-interference ability, large fluctuations in accuracy, poor stability and discontinuity. Therefore, a space-time fusion prediction and detection method of burden level based on a long-term focus memory network (LFMN) and an efficient structure self-tuning RBF neural network (ESST-RBFNN) is proposed. First, the space dimensional features are extracted by the space regression model based on radar data. Then, the LFMN is designed to predict the burden level and extract the time dimensional features. Finally, the ESST-RBFNN based on a proposed fast eigenvector space clustering algorithm (ESC) is constructed to obtain reliable and continuous burden level information with high accuracy. Both the simulation results and industrial verification indicate that the proposed method can provide real-time and continuous burden level information in real-time, which has great practical value for industrial production.
ISSN:1424-8220
1424-8220
DOI:10.3390/s22145412