Capillary-Assisted Monitoring of Milk Freshness via a Porous Cellulose-Based Label with High pH Sensitivity
A cellulose-based matrix for monitoring milk freshness (MF) was produced from rice straw particles (RSPs) in a 0.125-0.150 mm that was bis-quaternized to attach bromocresol purple (BP) as a sensor. Under alkali conditions, the obstinate structure of the rice straw had opened, thereby improving the a...
Gespeichert in:
Veröffentlicht in: | Foods 2023-04, Vol.12 (9), p.1857 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A cellulose-based matrix for monitoring milk freshness (MF) was produced from rice straw particles (RSPs) in a 0.125-0.150 mm that was bis-quaternized to attach bromocresol purple (BP) as a sensor. Under alkali conditions, the obstinate structure of the rice straw had opened, thereby improving the accessibility of the cellulose. Bis-quaternization created more adsorption sites for BP. The maximum adsorption capacity was 97.68 mg/g. The sensors were interwoven with cellulosic fibers to form the cellulose-based label with a relatively loose three-dimensional structure via hydrogen bonds. As the proportion of BP-BCRPs was increased from 10% to 40%, the air permeability of the label increased from 3.76 to 15.01 mm/s, which increased the response to the tested gases (10.12 s for 1 mL of acetic acid). The intelligent label exhibited excellent sensitivity at pH values of 3-9 with highly saturated color changes. During the storage period, the label color shifted from blue-purple to yellow as acidity was increased from 17.24 to 19.8 °T due to capillarity action, providing a timely warning to consumers. The prepared colorimetric porous intelligent cellulose-based label is suitable for monitoring of MF. |
---|---|
ISSN: | 2304-8158 2304-8158 |
DOI: | 10.3390/foods12091857 |