Prairie Dog Optimization Algorithm with deep learning assisted based Aerial Image Classification on UAV imagery

This study presents a Prairie Dog Optimization Algorithm with a Deep learning-assisted Aerial Image Classification Approach (PDODL-AICA) on UAV images. The PDODL-AICA technique exploits the optimal DL model for classifying aerial images into numerous classes. In the presented PDODL-AICA technique, t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Heliyon 2024-09, Vol.10 (18), p.e37446, Article e37446
Hauptverfasser: K. Alkhalifa, Amal, Kashif Saeed, Muhammad, M. Othman, Kamal, A. Ebad, Shouki, Alonazi, Mohammed, Mohamed, Abdullah
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study presents a Prairie Dog Optimization Algorithm with a Deep learning-assisted Aerial Image Classification Approach (PDODL-AICA) on UAV images. The PDODL-AICA technique exploits the optimal DL model for classifying aerial images into numerous classes. In the presented PDODL-AICA technique, the feature extraction procedure is executed using the EfficientNetB7 model. Besides, the hyperparameter tuning of the EfficientNetB7 technique uses the PDO model. The PDODL-AICA technique uses a convolutional variational autoencoder (CVAE) model to detect and classify aerial images. The performance study of the PDODL-AICA model is implemented on a benchmark UAV image dataset. The experimental values inferred the authority of the PDODL-AICA approach over recent models in terms of dissimilar measures.
ISSN:2405-8440
2405-8440
DOI:10.1016/j.heliyon.2024.e37446