A radial map of multi-whisker correlation selectivity in the rat barrel cortex
In the barrel cortex, several features of single-whisker stimuli are organized in functional maps. The barrel cortex also encodes spatio-temporal correlation patterns of multi-whisker inputs, but so far the cortical mapping of neurons tuned to such input statistics is unknown. Here we report that la...
Gespeichert in:
Veröffentlicht in: | Nature communications 2016-11, Vol.7 (1), p.13528-13528, Article 13528 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In the barrel cortex, several features of single-whisker stimuli are organized in functional maps. The barrel cortex also encodes spatio-temporal correlation patterns of multi-whisker inputs, but so far the cortical mapping of neurons tuned to such input statistics is unknown. Here we report that layer 2/3 of the rat barrel cortex contains an additional functional map based on neuronal tuning to correlated versus uncorrelated multi-whisker stimuli: neuron responses to uncorrelated multi-whisker stimulation are strongest above barrel centres, whereas neuron responses to correlated and anti-correlated multi-whisker stimulation peak above the barrel–septal borders, forming rings of multi-whisker synchrony-preferring cells.
Barrel cortex contains a functional map of whiskers but how neuronal activity maps multi-whisker inputs has not been studied. Here the authors show that while uncorrelated multi-whisker stimuli activate barrel neurons, correlated multi-whisker inputs activate neurons in a ring at the barrel-septa boundary |
---|---|
ISSN: | 2041-1723 2041-1723 |
DOI: | 10.1038/ncomms13528 |