Intersection graphs associated with semigroup acts

< p>The intersection graph $\\mathbb{Int}(A)$ of an $S$-act $A$ over a semigroup $S$ is an undirected simple graph whose vertices are non-trivial subacts of $A$, and two distinct vertices are adjacent if and only if they have a non-empty intersection. In this paper, we study some graph-theoret...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Categories and general algebraic structures with applications 2019-07, Vol.11 (1), p.131-148
Hauptverfasser: Delfan, Abdolhossein, Rasouli, Hamid, Tehranian, Abolfazl
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:< p>The intersection graph $\\mathbb{Int}(A)$ of an $S$-act $A$ over a semigroup $S$ is an undirected simple graph whose vertices are non-trivial subacts of $A$, and two distinct vertices are adjacent if and only if they have a non-empty intersection. In this paper, we study some graph-theoretic properties of $\\mathbb{Int}(A)$ in connection to some algebraic properties of $A$. It is proved that the finiteness of each of the clique number, the chromatic number, and the degree of some or all vertices in $\\mathbb{Int}(A)$ is equivalent to the finiteness of the number of subacts of $A$. Finally, we determine the clique number of the graphs of certain classes of $S$-acts.
ISSN:2345-5853
2345-5861
DOI:10.29252/CGASA.11.1.131