Assessment of riparian environments through semi-automated procedures for the computation of eco-morphological indicators: Preliminary results of the WEQUAL project

The aim of WEQUAL project (WEb service centre for QUALity multidimensional design and tele-operated monitoring of Green Infrastructures) is the development of a system that is able to support a quick environmental monitoring of riparian areas subjected to the realization of new green infrastructures...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bodenkultur 2019-12, Vol.70 (3), p.131-145
Hauptverfasser: Gallo, Raimondo, Ristorto, Gianluca, Bojeri, Alex, Zorzi, Nadia, Daglio, Gabriele, Rinaldi, Monica Fernanda, Sauli, Giuliano, Mazzetto, Fabrizio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The aim of WEQUAL project (WEb service centre for QUALity multidimensional design and tele-operated monitoring of Green Infrastructures) is the development of a system that is able to support a quick environmental monitoring of riparian areas subjected to the realization of new green infrastructures (GI). The Wequal’s idea is to organize a service center able to manage both the Web Platform and the whole data collection and analysis processes. Through a personal account, the final user (designer, technician, researcher) can get access to the service and requires the evaluation of alternatives GI projects. On the Web Platform, a set of algorithms runs in order to calculate, through automatic procedures, all the ecological criteria required to evaluate a quality environmental index that describes the eco-morphological value of the monitored riparian areas. For this aim, the WEQUI index was developed, which uses 15 indicators that are easy to monitor. In this paper, the approach for environmental data collection and the procedures to perform the automatic assessment of two of the ecological criteria are described. For the computation, the implemented algorithms use data including the vegetation indexes, Digital Terrain Model (DTM), Digital Surface Model (DSM) and a 3D point cloud classification. All the raw data are collected by UAVs (Unmanned Aircraft Vehicle) equipped with a 3D Lidar, multispectral camera and RGB camera. Interpreting all the raw data collected by these sensors, using a multi-attribute approach, the WEQUI index is assessed. The computed ecological index is then used to assess the riparian environmental quality at and river stabilization works. This index, integrated with additional not-technical or not-ecological indicators such as investment required, maintenance costs or social acceptance, can be used in multicriteria analyses in order to evaluate the intervention from a wider point of view. The platform is expected to be attractive for GI designers and policy makers by providing a shared environment, which is able to integrate the method of detection and evaluation of complex indexes and a multidimensional evaluation supported by an expert guide.
ISSN:0006-5471
0006-5471
DOI:10.2478/boku-2019-0012