CBP/p300 is a cell type-specific modulator of CLOCK/BMAL1-mediated transcription
Previous studies have demonstrated tissue-specific regulation of the rhythm of circadian transcription, suggesting that transcription factor complex CLOCK/BMAL1, essential for maintaining circadian rhythm, regulates transcription in a tissue-specific manner. To further elucidate the mechanism of the...
Gespeichert in:
Veröffentlicht in: | Molecular brain 2009-11, Vol.2 (1), p.34-34, Article 34 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Previous studies have demonstrated tissue-specific regulation of the rhythm of circadian transcription, suggesting that transcription factor complex CLOCK/BMAL1, essential for maintaining circadian rhythm, regulates transcription in a tissue-specific manner. To further elucidate the mechanism of the cell type-specific regulation of transcription by CLOCK/BMAL1 at the molecular level, we investigated roles of CBP/p300 and tissue-specific cofactors in CLOCK/BMAL1-mediated transcription.
As shown previously, CBP/p300 stimulates CLOCK/BMAL1-mediated transcription in COS-1 cells. However, CBP/p300 repressed CLOCK/BMAL1-mediated transcription in NIH3T3 cells and knockdown of CBP or p300 expression by siRNA enhanced this transcription. Studies using GAL4-fusion proteins suggested that CBP represses CLOCK/BMAL1-mediated transcription by targeting CLOCK. We further investigated mechanisms of this cell type-specific modulation of CLOCK/BMAL1-mediated transcription by CBP by examining roles of co-repressor HDAC3 and co-activator pCAF, which are highly expressed in NIH3T3 and COS cells, respectively. CBP repressed CLOCK/BMAL1-mediated transcription in COS-1 cells when HDAC3 was overexpressed, but activated it in NIH3T3 cells when pCAF was overexpressed. CBP forms a complex with CLOCK by interacting with HDAC3 or pCAF; however, direct interaction of CBP with CLOCK was not observed.
Our findings indicate possible mechanisms by which CBP/p300 tissue-specifically acts cooperatively with pCAF and HDAC3 either as a co-activator or co-repressor, respectively, for CLOCK/BMAL1. |
---|---|
ISSN: | 1756-6606 1756-6606 |
DOI: | 10.1186/1756-6606-2-34 |