On Cluster C ⁎ -Algebras

We introduce a C ⁎ -algebra A ( x , Q ) attached to the cluster x and a quiver Q . If Q T is the quiver coming from triangulation T of the Riemann surface S with a finite number of cusps, we prove that the primitive spectrum of A ( x , Q T ) times R is homeomorphic to a generic subset of the Teichmü...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of function spaces 2016-01, Vol.2016 (2016), p.1-8
1. Verfasser: Nikolaev, Igor V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We introduce a C ⁎ -algebra A ( x , Q ) attached to the cluster x and a quiver Q . If Q T is the quiver coming from triangulation T of the Riemann surface S with a finite number of cusps, we prove that the primitive spectrum of A ( x , Q T ) times R is homeomorphic to a generic subset of the Teichmüller space of surface S . We conclude with an analog of the Tomita-Takesaki theory and the Connes invariant T ( M ) for the algebra A ( x , Q T ) .
ISSN:2314-8896
2314-8888
DOI:10.1155/2016/9639875