On Cluster C ⁎ -Algebras
We introduce a C ⁎ -algebra A ( x , Q ) attached to the cluster x and a quiver Q . If Q T is the quiver coming from triangulation T of the Riemann surface S with a finite number of cusps, we prove that the primitive spectrum of A ( x , Q T ) times R is homeomorphic to a generic subset of the Teichmü...
Gespeichert in:
Veröffentlicht in: | Journal of function spaces 2016-01, Vol.2016 (2016), p.1-8 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We introduce a C ⁎ -algebra A ( x , Q ) attached to the cluster x and a quiver Q . If Q T is the quiver coming from triangulation T of the Riemann surface S with a finite number of cusps, we prove that the primitive spectrum of A ( x , Q T ) times R is homeomorphic to a generic subset of the Teichmüller space of surface S . We conclude with an analog of the Tomita-Takesaki theory and the Connes invariant T ( M ) for the algebra A ( x , Q T ) . |
---|---|
ISSN: | 2314-8896 2314-8888 |
DOI: | 10.1155/2016/9639875 |